型号: | LDS-50A,LDS-100A, LDS-200A, LDS-500A, LDS-1000A, LDS-2000A, LDS-5000A |
机台容许荷重: | 50N,100N,200N,500N,1000N,2000N,5000N |
荷重元: | 美制0.5级高精度力量传感器 |
度等级: | 0.5级/1级 |
试验力测试范围: | 0.4%~100%FS |
力量精度: | ±0.5%以内/±1%以内 |
力量分解度: | 1/200000 |
位移示值误差: | 示值的±0.5%以内 |
位移分辩率: | 0.05um |
变型测量范围: | 2~100%FS |
变形示值误差: | 示值的±0.5%以内 |
变形分辩率: | 最大变形的1/200000 |
大变形测量范围: | 10~1000mm |
大变形示值误差限: | 示值的±0.5%以内 |
大变形分辩率: | 0.008mm |
伺服电机功率: | 0.75W |
测试速度范围: | 1~500mm/min /0.001~500mm/min |
速度精度: | 示值的±0.5%以内 |
传动方式: | 上海飓风伺服电机/日本松下伺服电机 |
控制系统: | 上海飓风伺服电机驱动器/日本松下伺服驱动控制器 |
测试行程(不含具): | 1000mm |
体积(W*D*H): | 560x320x1800mm |
电源: | AC220V 50HZ |
重量: | 150KG |
支柱间距: | 380mm |
电脑系统: | 品牌电脑+彩色打印机一套 |
材料试验机软体: | 基于WINDOWS-XP平台下的TESTSMART材料试验机专用软体 |
自动停机装置 | 1.上下限行程保护装置 2.最大容量超载保护 3.漏电保护 |
夹具配置: | 依客户试验产品选配专用夹具2套 |
标准配备附件: | 1.机械操作说明书一份,2.软件说明书一份,3.产品合格书一份,4.维护工具一付 |
另需选购配备附件: | 1.可选择附加力量传感器从而扩大测量范围2.大变形两点伸长计3.小变形金属两点伸长计4.高低温试验箱5.安全防护门6.参考夹具目录选购,或提供样品规格设计制造 |
输入特性 | |||||
测量电压范围 | 5~450V | 输入阻抗 | 450KΩ | ||
测量电流范围 | 0.02~25A(直接测量) | 输入阻抗 | <450Ω | ||
测量频率 | 45~65Hz | 测量相位 | 0~359.9o | ||
仪器度等级、测量分辨率及基本误差 | |||||
项目类别 | 等级 | 分辨率 | 基本误差 | ||
电压 | 0.05 | 0.1 | 0.005% | 0.05% | 0.1% |
电流 | 0.05 | 0.1 | 0.005% | 0.05% | 0.1% |
有功功率 | 0.05 | 0.1 | 0.005% | 0.05% | 0.1% |
无功功率 | 0.1 | 0.2 | 0.005% | 0.1% | 0.2% |
功率因数 | 0.05 | 0.1 | 0.005% | 0.05% | 0.1% |
相位角 | 0.05 | 0.1 | 0.005o | 0.05% | 0.1% |
频率 | 0.05 | 0.1 | 0.002 Hz | 0.05% | 0.1% |
有功电能 | 0.05 | 0.1 | 电表常数60000 | 0.05% | 0.1% |
无功电能 | 0.1 | 0.2 | 0.1% | 0.2% | |
安全性能 | |||||
绝缘电阻 | ≥100MΩ(1000V) | 工频耐压 | 2KV/min交流 | ||
供电电源 | |||||
线电压供电 | 40~450V AC,10VA | 外接交流电源 | 220V±10% AC,50Hz | ||
其它 | |||||
体积和重量 | 390mm×200mm×160mm/4.2Kg | ||||
使用及贮存环境 | -10℃~45℃/ 25~80%RH(使用);-20~65oC/10~90%RH(贮存) | ||||
存储数据容量 | 224组数据(包括U、I、P、Q、向量图、校验误差等) |
智能灰熔融测试仪仪专门用于煤灰熔融性测定的智能化仪器。按照国标GB/T219-1996采用单片机自动控制升温速度,炉体可以自由旋转,取放样方便。
智能灰熔融测试仪的性能特点
1 适用于测定煤的灰熔融特性。2 单片机程序控制,按国标自动完成灰熔点测定的升温过程。3 具有多种故障提示功能。操作简便,性能稳定。4 增加CCD摄像,试验过程由摄像机采集图像,清析直观。
智能灰熔融测试仪的技术指标及参数
温度 室温-1600℃ 测温误差 ±3℃ 升温速度 900℃以前15±20℃/min(可以选择) 900℃以后5±1℃ /min 定时误差 小于1S/H 电源电压 AC220V±10%、50Hz 最大电流 30A 工作方式 连续
简单实用型,ZK-2A 土壤养分测试仪 土壤养分速测仪
适用于 个人种植(大棚,瓜果蔬菜,大田等农作物),园林、花卉、农林院校等单位。
一、可以检测内容:
1、土壤中 氮、磷、钾、有机质、酸碱和腐殖酸的含量。
2、植株中 氮、磷、钾、有机质、酸碱和腐殖酸的含量。
3、肥料中 氮、磷、钾、有机质、酸碱和腐殖酸的含量。
二、特点:
1、采用原装进口微电脑芯片设计,操作简单性能稳定。2、测试数据直读每亩公斤数,无需查表计算3、有数据存储功能,有备无患,方便查询。4、 直接进入测试,自动调整,无需校准。5、可存储18个测试样品,降低测试成本。6、通电即可使用,无需预热,节约能源。
7、不同作物,查表施肥,一目了然。
8、可以车载,使用方便。
三、性能指标
650nm(带宽型)蓝光440nm(带宽型)测试误差:硫酸铜 ±2 RU重铬酸钾 ±6 BU
抗震性:合格
1、交流电:220V (室内照明电均可)
2、直流电:9V-12V
3、连接汽车点烟器即可使用
售后服务: 一年保换 终身保修
北京中科维禾科技发展有限公司
欢迎咨询订购
电话:;;手机:;;; QQ:1483954306 534218508;
地址:北京市海淀区圆明园西路2号 中国农业大学168#;
测试范围 | 适用于CATV和金属电缆 |
距离范围(最大量程): | 当0.990VOP时为19.4km 当0.800VOP时为15.5km |
精度 | ±0.03m±0.01%读数 |
水平分辨率 | <610m:当0.99VOP时为0.03m,当0.30VOP时为0.01m >610m:任何VOP时为0.10m |
垂直灵敏度: | >65分贝 |
输出 | BNC插座 |
脉冲输出 | 脉冲输出宽度可选 |
传播速度 | VOP变化范围为30%-99% V/2变化范围为45.8-148.9m/μs |
自动/手动噪声滤波: | 标准:两个均值滤波器。 可选:多功能/多级滤波器 |
波形存贮: | 可存8个(标准)到32个(可选)波形 |
显示 | 320×240点阵液晶显示屏,带背光 |
接口 | RS-232 |
电源 | 充电装置:内部7.2V镍氢充电电池供电,可使用6小时以上(无背光)外部12V交流变压器1.3 |
工作环境 | 操作温度:0℃-50℃; |
| 存放温度:-20℃-60℃ |
| 相对湿度:最大95% |
安全保护 | 400V交流或直流,最大频率400Hz, 频率1mHz时,降为10v |
防水等级 | IP54 |
安全性 | IEC1010 |
尺寸 | 267×247.6×127mm;2.7kg |
附件 | 防水肩包;充电电池;充电器;滤波器;连接器;波形观察分析软件(WAVE-VIEW)便携包;说明书; |
任选附件 | 波形贮存,多功能/多级噪音滤波器;12V点烟器充电器;工具包,便携箱 |
满足光伏组件IEC61215各项试验...
Current-Voltage Measurement System (IV Tester) -20W Version for Continuous Solar SimulatorsMain Features:? Designed for use with continuous or pulse solar simulators? An output trigger TTL signal is used to synchronize its data acquisition with pulse solarsimulators? Variable resistive load? Max Electrical Power Reading: 20W base model, 60W high power model? Base Model Voltage range 200V (can be modified with additional shunt to suitapplication)? Base Model Current range 1A (can be modified with additional coil to suit application)? High Power Model Voltage range 60V (can be modified with additional shunt to suitapplication)? High Power Model Current range 3A (can be modified with additional coil to suitapplication)? Separate terminal interface for voltage and current measurements? Interfaces to PC via GPIB cable for display and data storage (hence GPIB card requiredin computer)? Saves each IV curve dataset in separate ASCII text file? I-V range selectable? Number of sample points selectable (between 10-100 points)? Sci-IVTest Windows based control softwareParameters Measured by IV SoftwareVoc, IocVsc, IscVmax, Imax, Pmaxefficiency (%)Light and dark I-V characteristics上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Voc Slope (similar to Rs)Rp or Rshunt (system measures slope near Isc for this value)FF or Fill FactorJSc (mA/cm2)Forward and Reverse Sweep FeatureSKU: SSIVT-20CThe SSIVT is an electrical current-voltage measurement system used to characterizephotovoltaic cell performance. This current-voltage tester works by sampling various currentversus voltage combinations of the photovoltaic cell with a variable impedance load. Theperformance of the photovoltaic cell is determined by measuring this output I-V relationshipwhile it is being illuminated by light. This relationship is typically called an "I-V curve" and canbe obtained by exposing the photovoltaic cell to a constant level of light while varying anexternal impedance load such that its current-voltage values change. Since multiple I-V datapoints are required to create an I-V curve, an external trigger function model is available foruse with pulse solar simulators. This allows the tester to create multiple sequential pulses(typically 10-100 points selectable) to complete the IV curve measurements. Universal input100-240VAC, 50/60Hz. Software and GPIB Board is included. An external computer (soldseparately) such as the PC computer controller is required to control this current-voltagemeasurement system.Purpose of Current Vs Voltage Measurement TestA solar cell may be operated over a wide range of voltage and current combinations, but thereis generally an optimum combination for maximum energy collection efficiency. By varying anexternal load resistance from zero to infinity, the optimum I-V combination where the solar celldelivers the most power can be found.Current and Voltage Measurement RangeThe standard I-V Test system can measure electrical power from photovoltaic cells up to 20W.The voltage envelope is limited to 200V and the current is limited to 1A. A higher powered60W version is available where the voltage is limited to 60V and the current is limited to 3A.For higher loads, shunts to measure a portion of the current can be used. In general, thelimitation of the standard model is the 1A current limit. If your solar cell can generate morecurrent than 1A, then we recommend upgrading to the 60W model.Voltage Scaling FactorAlthough the maximum voltage of the base unit is 200V, the software can rescale its scanningrange to 2V, 10V, 20V or 200V. Once the scale is selected, the maximum number of I-Vmeasurement points that can be taken in that selected range is 100 points.Current Density - Voltage (J-V) MeasurementsThe software currently only measures I-V characteristics and JSc (mA/cm2), but other J-V上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司values can be derrived as J=I/area. The software outputs the I-V characteristics in an ASCIIfile which can then be read to derrive current density values.SoftwareSoftware is written in Labview, but a Labview Runtime engine allows it to run on Windows XPwithout the Labview development toolkit.System NotesThe I-V Measurement System sweeps the IV curve with an automatically adjustable resistiveload and records multiple I-V data points along the way. The voltage and current ranges aresoftware selectable and so is the number of points taken, from 10-100 points depending onthe time length of the test allowable. The I-V data point values are then recorded and plottedon a computer display and saved in an ASCII text file. The points are selected by voltage,hence the voltage readings are evenly spaced.I-V Measurement BasicsFill Factor: Fill factor refers to the "squareness" of the I-V curve. It describes how closelymatched the voltage is at its maximum power point and the current is also at its maximumpower point. The higher the fill factor match, the more square the I-V curve.Conversion Efficiency: The conversion efficiency of a solar cell is the percentage of lightenergy that gets converted to electrical power.References:The U.S. Department of Energy maintains a good website on how to use I-V measurementsystems in solar cell testing. Please see www.eere.energy.gov/solar/current_voltage.htmlTechnical Specifications? Base unit 200V max. (scale to 2V or 10V, but 20V and 200V scales possible please ask)? Dwell time (wait time between each I-V reading) - programable, but cannot be below3ms? Number of I-V scanned points - 10 to 100 programable? Hardware Voltage Resolution: 50μv @ 2V scale, 500μV @ 20V scale (accuracy perreading)? Hardware Current Resolution: 50μA @ 1A scale (accuracy per reading)? I-V Measurement Sweep Resolution: (voltage scale selected / number of I-V scannedpoints)? Software Display Resolution: typically mV and mA (but 3 decimals shown, so can be3.456E-1 A for addition decimal)上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Current-Voltage Measurement System (IV Tester) -20W Version for Flash Solar SimulatorsMain Features:? Designed for use with continuous or pulse solar simulators? An output trigger TTL signal is used to synchronize its data acquisition with pulse solarsimulators? Variable resistive load? Max Electrical Power Reading: 20W base model, 60W high power model? Base Model Voltage range 200V (can be modified with additional shunt to suitapplication)? Base Model Current range 1A (can be modified with additional coil to suit application)? High Power Model Voltage range 60V (can be modified with additional shunt to suitapplication)? High Power Model Current range 3A (can be modified with additional coil to suitapplication)? Separate terminal interface for voltage and current measurements? Interfaces to PC via GPIB cable for display and data storage (hence GPIB card requiredin computer)? Saves each IV curve dataset in separate ASCII text file? I-V range selectable? Number of sample points selectable (between 10-100 points)? Sci-IVTest Windows based control softwareParameters Measured by IV SoftwareVoc, IocVsc, IscVmax, Imax, Pmaxefficiency (%)Light and dark I-V characteristics上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Voc Slope (similar to Rs)Rp or Rshunt (system measures slope near Isc for this value)FF or Fill FactorJSc (mA/cm2)Forward and Reverse Sweep FeatureSKU: SSIVT-20FThe SSIVT is an electrical current-voltage measurement system used to characterizephotovoltaic cell performance. This current-voltage tester works by sampling various currentversus voltage combinations of the photovoltaic cell with a variable impedance load. Theperformance of the photovoltaic cell is determined by measuring this output I-V relationshipwhile it is being illuminated by light. This relationship is typically called an "I-V curve" and canbe obtained by exposing the photovoltaic cell to a constant level of light while varying anexternal impedance load such that its current-voltage values change. Since multiple I-V datapoints are required to create an I-V curve, an external trigger function model is available foruse with pulse solar simulators. This allows the tester to create multiple sequential pulses(typically 10-100 points selectable) to complete the IV curve measurements. Universal input100-240VAC, 50/60Hz. Software and GPIB Board is included. An external computer (soldseparately) such as the PC computer controller is required to control this current-voltagemeasurement system.Purpose of Current Vs Voltage Measurement TestA solar cell may be operated over a wide range of voltage and current combinations, but thereis generally an optimum combination for maximum energy collection efficiency. By varying anexternal load resistance from zero to infinity, the optimum I-V combination where the solar celldelivers the most power can be found.Current and Voltage Measurement RangeThe standard I-V Test system can measure electrical power from photovoltaic cells up to 20W.The voltage envelope is limited to 200V and the current is limited to 1A. A higher powered60W version is available where the voltage is limited to 60V and the current is limited to 3A.For higher loads, shunts to measure a portion of the current can be used. In general, thelimitation of the standard model is the 1A current limit. If your solar cell can generate morecurrent than 1A, then we recommend upgrading to the 60W model.Voltage Scaling FactorAlthough the maximum voltage of the base unit is 200V, the software can rescale its scanningrange to 2V, 10V, 20V or 200V. Once the scale is selected, the maximum number of I-Vmeasurement points that can be taken in that selected range is 100 points.Current Density - Voltage (J-V) MeasurementsThe software currently only measures I-V characteristics and JSc (mA/cm2), but other J-V上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司values can be derrived as J=I/area. The software outputs the I-V characteristics in an ASCIIfile which can then be read to derrive current density values.SoftwareSoftware is written in Labview, but a Labview Runtime engine allows it to run on Windows XPwithout the Labview development toolkit.System NotesThe I-V Measurement System sweeps the IV curve with an automatically adjustable resistiveload and records multiple I-V data points along the way. The voltage and current ranges aresoftware selectable and so is the number of points taken, from 10-100 points depending onthe time length of the test allowable. The I-V data point values are then recorded and plottedon a computer display and saved in an ASCII text file. The points are selected by voltage,hence the voltage readings are evenly spaced.I-V Measurement BasicsFill Factor: Fill factor refers to the "squareness" of the I-V curve. It describes how closelymatched the voltage is at its maximum power point and the current is also at its maximumpower point. The higher the fill factor match, the more square the I-V curve.Conversion Efficiency: The conversion efficiency of a solar cell is the percentage of lightenergy that gets converted to electrical power.References:The U.S. Department of Energy maintains a good website on how to use I-V measurementsystems in solar cell testing. Please see www.eere.energy.gov/solar/current_voltage.htmlTechnical Specifications? Base unit 200V max. (scale to 2V or 10V, but 20V and 200V scales possible please ask)? Dwell time (wait time between each I-V reading) - programable, but cannot be below3ms? Number of I-V scanned points - 10 to 100 programable? Hardware Voltage Resolution: 50μv @ 2V scale, 500μV @ 20V scale (accuracy perreading)? Hardware Current Resolution: 50μA @ 1A scale (accuracy per reading)? I-V Measurement Sweep Resolution: (voltage scale selected / number of I-V scannedpoints)? Software Display Resolution: typically mV and mA (but 3 decimals shown, so can be3.456E-1 A for addition decimal)上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Current-Voltage Measurement System (IV Tester) -60W Version for Continuous Solar SimulatorsMain Features:? Designed for use with continuous or pulse solar simulators? An output trigger TTL signal is used to synchronize its data acquisition with pulse solarsimulators? Variable resistive load? Max Electrical Power Reading: 20W base model, 60W high power model? Base Model Voltage range 200V (can be modified with additional shunt to suitapplication)? Base Model Current range 1A (can be modified with additional coil to suit application)? High Power Model Voltage range 60V (can be modified with additional shunt to suitapplication)? High Power Model Current range 3A (can be modified with additional coil to suitapplication)? Separate terminal interface for voltage and current measurements? Interfaces to PC via GPIB cable for display and data storage (hence GPIB card requiredin computer)? Saves each IV curve dataset in separate ASCII text file? I-V range selectable? Number of sample points selectable (between 10-100 points)? Sci-IVTest Windows based control softwareParameters Measured by IV SoftwareVoc, IocVsc, IscVmax, Imax, Pmaxefficiency (%)Light and dark I-V characteristics上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Voc Slope (similar to Rs)Rp or Rshunt (system measures slope near Isc for this value)FF or Fill FactorJSc (mA/cm2)Forward and Reverse Sweep FeatureSKU: SSIVT-60CThe SSIVT is an electrical current-voltage measurement system used to characterizephotovoltaic cell performance. This current-voltage tester works by sampling various currentversus voltage combinations of the photovoltaic cell with a variable impedance load. Theperformance of the photovoltaic cell is determined by measuring this output I-V relationshipwhile it is being illuminated by light. This relationship is typically called an "I-V curve" and canbe obtained by exposing the photovoltaic cell to a constant level of light while varying anexternal impedance load such that its current-voltage values change. Since multiple I-V datapoints are required to create an I-V curve, an external trigger function model is available foruse with pulse solar simulators. This allows the tester to create multiple sequential pulses(typically 10-100 points selectable) to complete the IV curve measurements. Universal input100-240VAC, 50/60Hz. Software and GPIB Board is included. An external computer (soldseparately) such as the PC computer controller is required to control this current-voltagemeasurement system.Purpose of Current Vs Voltage Measurement TestA solar cell may be operated over a wide range of voltage and current combinations, but thereis generally an optimum combination for maximum energy collection efficiency. By varying anexternal load resistance from zero to infinity, the optimum I-V combination where the solar celldelivers the most power can be found.Current and Voltage Measurement RangeThe standard I-V Test system can measure electrical power from photovoltaic cells up to 20W.The voltage envelope is limited to 200V and the current is limited to 1A. A higher powered60W version is available where the voltage is limited to 60V and the current is limited to 3A.For higher loads, shunts to measure a portion of the current can be used. In general, thelimitation of the standard model is the 1A current limit. If your solar cell can generate morecurrent than 1A, then we recommend upgrading to the 60W model.Voltage Scaling FactorAlthough the maximum voltage of the base unit is 200V, the software can rescale its scanningrange to 2V, 10V, 20V or 200V. Once the scale is selected, the maximum number of I-Vmeasurement points that can be taken in that selected range is 100 points.Current Density - Voltage (J-V) MeasurementsThe software currently only measures I-V characteristics and JSc (mA/cm2), but other J-V上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司values can be derrived as J=I/area. The software outputs the I-V characteristics in an ASCIIfile which can then be read to derrive current density values.SoftwareSoftware is written in Labview, but a Labview Runtime engine allows it to run on Windows XPwithout the Labview development toolkit.System NotesThe I-V Measurement System sweeps the IV curve with an automatically adjustable resistiveload and records multiple I-V data points along the way. The voltage and current ranges aresoftware selectable and so is the number of points taken, from 10-100 points depending onthe time length of the test allowable. The I-V data point values are then recorded and plottedon a computer display and saved in an ASCII text file. The points are selected by voltage,hence the voltage readings are evenly spaced.I-V Measurement BasicsFill Factor: Fill factor refers to the "squareness" of the I-V curve. It describes how closelymatched the voltage is at its maximum power point and the current is also at its maximumpower point. The higher the fill factor match, the more square the I-V curve.Conversion Efficiency: The conversion efficiency of a solar cell is the percentage of lightenergy that gets converted to electrical power.References:The U.S. Department of Energy maintains a good website on how to use I-V measurementsystems in solar cell testing. Please see www.eere.energy.gov/solar/current_voltage.htmlTechnical Specifications? Base unit 200V max. (scale to 2V or 10V, but 20V and 200V scales possible please ask)? Dwell time (wait time between each I-V reading) - programable, but cannot be below3ms? Number of I-V scanned points - 10 to 100 programable? Hardware Voltage Resolution: 50μv @ 2V scale, 500μV @ 20V scale (accuracy perreading)? Hardware Current Resolution: 50μA @ 1A scale (accuracy per reading)? I-V Measurement Sweep Resolution: (voltage scale selected / number of I-V scannedpoints)? Software Display Resolution: typically mV and mA (but 3 decimals shown, so can be3.456E-1 A for addition decimal)上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Current-Voltage Measurement System (IV Tester) -60W Version for Flash Solar SimulatorsMain Features:? Designed for use with continuous or pulse solar simulators? An output trigger TTL signal is used to synchronize its data acquisition with pulse solarsimulators? Variable resistive load? Max Electrical Power Reading: 20W base model, 60W high power model? Base Model Voltage range 200V (can be modified with additional shunt to suitapplication)? Base Model Current range 1A (can be modified with additional coil to suit application)? High Power Model Voltage range 60V (can be modified with additional shunt to suitapplication)? High Power Model Current range 3A (can be modified with additional coil to suitapplication)? Separate terminal interface for voltage and current measurements? Interfaces to PC via GPIB cable for display and data storage (hence GPIB card requiredin computer)? Saves each IV curve dataset in separate ASCII text file? I-V range selectable? Number of sample points selectable (between 10-100 points)? Sci-IVTest Windows based control softwareParameters Measured by IV SoftwareVoc, IocVsc, IscVmax, Imax, Pmaxefficiency (%)Light and dark I-V characteristics上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Voc Slope (similar to Rs)Rp or Rshunt (system measures slope near Isc for this value)FF or Fill FactorJSc (mA/cm2)Forward and Reverse Sweep FeatureSKU: SSIVT-60FThe SSIVT is an electrical current-voltage measurement system used to characterizephotovoltaic cell performance. This current-voltage tester works by sampling various currentversus voltage combinations of the photovoltaic cell with a variable impedance load. Theperformance of the photovoltaic cell is determined by measuring this output I-V relationshipwhile it is being illuminated by light. This relationship is typically called an "I-V curve" and canbe obtained by exposing the photovoltaic cell to a constant level of light while varying anexternal impedance load such that its current-voltage values change. Since multiple I-V datapoints are required to create an I-V curve, an external trigger function model is available foruse with pulse solar simulators. This allows the tester to create multiple sequential pulses(typically 10-100 points selectable) to complete the IV curve measurements. Universal input100-240VAC, 50/60Hz. Software and GPIB Board is included. An external computer (soldseparately) such as the PC computer controller is required to control this current-voltagemeasurement system.Purpose of Current Vs Voltage Measurement TestA solar cell may be operated over a wide range of voltage and current combinations, but thereis generally an optimum combination for maximum energy collection efficiency. By varying anexternal load resistance from zero to infinity, the optimum I-V combination where the solar celldelivers the most power can be found.Current and Voltage Measurement RangeThe standard I-V Test system can measure electrical power from photovoltaic cells up to 20W.The voltage envelope is limited to 200V and the current is limited to 1A. A higher powered60W version is available where the voltage is limited to 60V and the current is limited to 3A.For higher loads, shunts to measure a portion of the current can be used. In general, thelimitation of the standard model is the 1A current limit. If your solar cell can generate morecurrent than 1A, then we recommend upgrading to the 60W model.Voltage Scaling FactorAlthough the maximum voltage of the base unit is 200V, the software can rescale its scanningrange to 2V, 10V, 20V or 200V. Once the scale is selected, the maximum number of I-Vmeasurement points that can be taken in that selected range is 100 points.Current Density - Voltage (J-V) MeasurementsThe software currently only measures I-V characteristics and JSc (mA/cm2), but other J-V上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司values can be derrived as J=I/area. The software outputs the I-V characteristics in an ASCIIfile which can then be read to derrive current density values.SoftwareSoftware is written in Labview, but a Labview Runtime engine allows it to run on Windows XPwithout the Labview development toolkit.System NotesThe I-V Measurement System sweeps the IV curve with an automatically adjustable resistiveload and records multiple I-V data points along the way. The voltage and current ranges aresoftware selectable and so is the number of points taken, from 10-100 points depending onthe time length of the test allowable. The I-V data point values are then recorded and plottedon a computer display and saved in an ASCII text file. The points are selected by voltage,hence the voltage readings are evenly spaced.I-V Measurement BasicsFill Factor: Fill factor refers to the "squareness" of the I-V curve. It describes how closelymatched the voltage is at its maximum power point and the current is also at its maximumpower point. The higher the fill factor match, the more square the I-V curve.Conversion Efficiency: The conversion efficiency of a solar cell is the percentage of lightenergy that gets converted to electrical power.References:The U.S. Department of Energy maintains a good website on how to use I-V measurementsystems in solar cell testing. Please see www.eere.energy.gov/solar/current_voltage.htmlTechnical Specifications? Base unit 200V max. (scale to 2V or 10V, but 20V and 200V scales possible please ask)? Dwell time (wait time between each I-V reading) - programable, but cannot be below3ms? Number of I-V scanned points - 10 to 100 programable? Hardware Voltage Resolution: 50μv @ 2V scale, 500μV @ 20V scale (accuracy perreading)? Hardware Current Resolution: 50μA @ 1A scale (accuracy per reading)? I-V Measurement Sweep Resolution: (voltage scale selected / number of I-V scannedpoints)? Software Display Resolution: typically mV and mA (but 3 decimals shown, so can be3.456E-1 A for addition decimal)上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Current-Voltage Measurement System (IV Tester) -1000W Version for Flash Solar SimulatorsMain Features:? Designed for use with continuous or pulse solar simulators? An output trigger TTL signal is used to synchronize its data acquisition with pulse solarsimulators? Variable resistive load? Max Electrical Power Reading: 20W base model, 60W high power model? Base Model Voltage range 200V (can be modified with additional shunt to suitapplication)? Base Model Current range 1A (can be modified with additional coil to suit application)? High Power Model Voltage range 60V (can be modified with additional shunt to suitapplication)? High Power Model Current range 3A (can be modified with additional coil to suitapplication)? Separate terminal interface for voltage and current measurements? Interfaces to PC via GPIB cable for display and data storage (hence GPIB card requiredin computer)? Saves each IV curve dataset in separate ASCII text file? I-V range selectable? Number of sample points selectable (between 10-100 points)? Sci-IVTest Windows based control softwareParameters Measured by IV SoftwareVoc, IocVsc, IscVmax, Imax, Pmaxefficiency (%)Light and dark I-V characteristics上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司Voc Slope (similar to Rs)Rp or Rshunt (system measures slope near Isc for this value)FF or Fill FactorJSc (mA/cm2)Forward and Reverse Sweep FeatureSKU: SSIVT-1KFThe SSIVT is an electrical current-voltage measurement system used to characterizephotovoltaic cell performance. This current-voltage tester works by sampling various currentversus voltage combinations of the photovoltaic cell with a variable impedance load. Theperformance of the photovoltaic cell is determined by measuring this output I-V relationshipwhile it is being illuminated by light. This relationship is typically called an "I-V curve" and canbe obtained by exposing the photovoltaic cell to a constant level of light while varying anexternal impedance load such that its current-voltage values change. Since multiple I-V datapoints are required to create an I-V curve, an external trigger function model is available foruse with pulse solar simulators. This allows the tester to create multiple sequential pulses(typically 10-100 points selectable) to complete the IV curve measurements. Universal input100-240VAC, 50/60Hz. Software and GPIB Board is included. An external computer (soldseparately) such as the PC computer controller is required to control this current-voltagemeasurement system.Purpose of Current Vs Voltage Measurement TestA solar cell may be operated over a wide range of voltage and current combinations, but thereis generally an optimum combination for maximum energy collection efficiency. By varying anexternal load resistance from zero to infinity, the optimum I-V combination where the solar celldelivers the most power can be found.Current and Voltage Measurement RangeThe standard I-V Test system can measure electrical power from photovoltaic cells up to 20W.The voltage envelope is limited to 200V and the current is limited to 1A. A higher powered60W version is available where the voltage is limited to 60V and the current is limited to 3A.For higher loads, shunts to measure a portion of the current can be used. In general, thelimitation of the standard model is the 1A current limit. If your solar cell can generate morecurrent than 1A, then we recommend upgrading to the 60W model.Voltage Scaling FactorAlthough the maximum voltage of the base unit is 200V, the software can rescale its scanningrange to 2V, 10V, 20V or 200V. Once the scale is selected, the maximum number of I-Vmeasurement points that can be taken in that selected range is 100 points.Current Density - Voltage (J-V) MeasurementsThe software currently only measures I-V characteristics and JSc (mA/cm2), but other J-V上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.com上海泊睿科学仪器有限公司上海市闵行区莘朱路903号(甲)厂区,201100Tel: 021-54387376,54380568 Fax: 021-54997016 E-mail:br.sci@263.net http://www.br17.comvalues can be derrived as J=I/area. The software outputs the I-V characteristics in an ASCIIfile which can then be read to derrive current density values.SoftwareSoftware is written in Labview, but a Labview Runtime engine allows it to run on Windows XPwithout the Labview development toolkit.System NotesThe I-V Measurement System sweeps the IV curve with an automatically adjustable resistiveload and records multiple I-V data points along the way. The voltage and current ranges aresoftware selectable and so is the number of points taken, from 10-100 points depending onthe time length of the test allowable. The I-V data point values are then recorded and plottedon a computer display and saved in an ASCII text file. The points are selected by voltage,hence the voltage readings are evenly spaced.I-V Measurement BasicsFill Factor: Fill factor refers to the "squareness" of the I-V curve. It describes how closelymatched the voltage is at its maximum power point and the current is also at its maximumpower point. The higher the fill factor match, the more square the I-V curve.Conversion Efficiency: The conversion efficiency of a solar cell is the percentage of lightenergy that gets converted to electrical power.References:The U.S. Department of Energy maintains a good website on how to use I-V measurementsystems in solar cell testing. Please see www.eere.energy.gov/solar/current_voltage.htmlTechnical Specifications? Base unit 200V max. (scale to 2V or 10V, but 20V and 200V scales possible please ask)? Dwell time (wait time between each I-V reading) - programable, but cannot be below3ms? Number of I-V scanned points - 10 to 100 programable? Hardware Voltage Resolution: 50μv @ 2V scale, 500μV @ 20V scale (accuracy perreading)? Hardware Current Resolution: 50μA @ 1A scale (accuracy per reading)? I-V Measurement Sweep Resolution: (voltage scale selected / number of I-V scannedpoints)? Software Display Resolution: typically mV and mA (but 3 decimals shown, so can be3.456E-1 A for addition decimal)上海泊睿科学仪器有限公司
SL-030A重锤式表面电阻测试仪是通过测量防静电产品表面的电阻,从而检测防静电产品的防静电能力。本仪器遵循ASTM标准D-257测试方法,测试时只需把两个重锤放置在需要测量的物体表面及按下红色的按键,仪器上的10个103Ω-1012ΩLED灯将其中一个测试数值亮起,亮起的LED灯所指示数值即为被测物体的表面电阻。
DRK130持粘性测试仪 胶带粘性透明胶带GB4851双面胶压敏胶带粘性本产品按照GB4851之规定设计制造,适用于压敏胶粘带等产品进行持粘性测试试验。
一、工作原理:
胶带粘性透明胶带GB4851双面胶压敏胶带粘性把贴有试样的试验板垂直吊挂在试验架上,下端悬挂规定重量的砝码,用一定时间后试样粘脱的位移量,或试样完全脱离的时间来表征胶粘带抵抗拉脱的能力。采用单片机计时,LCD液晶显示试验时间。
二、结构组成:主要由计时机构、试验板、加载板、砝码、机架及标准压辊等部分构成。
胶带粘性透明胶带GB4851双面胶压敏胶带粘性
三、技术指标:
标准压辊: 2000g±50 g 砝 码: 1000±10g(含加载板重量) 试 验 板: 60(L)㎜×40(B)㎜×1.5(D)mm 计时范围: 0~100h 工 位 数: 6件 外形尺寸: 600(L)㎜×240(B)㎜×400(H)mm 净 重: 20kg 电 源: AC 220V 50Hz
胶带粘性透明胶带GB4851双面胶压敏胶带粘性
济南德瑞克仪器公司主要从事以下仪器的生产和销售:电子拉力试验机,频闪仪,白度测定仪,纸板戳穿强度测定仪,平滑度仪,纸板挺度仪,纸板厚度测定仪,纸张撕裂度测定仪,耐破度仪,可勃吸收性测定仪,耐折度仪,纸张水分仪,压缩试验仪,定距取样刀,纸杯杯身挺度仪,打浆度仪,纸张尘埃度测定仪,光泽度仪,柔软度测定仪,铝膜测厚仪,纸张透气度测定仪,透光率雾度测定仪,纸箱抗压试验机,跌落试验机,层间剥离强度试验机,水分测定仪,摩擦系数仪,磨擦试验机,初粘性测试仪,持粘性测试仪,热封试验仪,密封仪,落镖式冲击试验机,薄膜摆锤冲击仪,反压高温蒸煮锅,静电测试仪,折痕挺度仪,标准光源对色灯箱,氧指数仪,恒温恒湿箱,老化试验箱,橡胶绍尔硬度计,阿克隆磨耗机,高精度薄膜测厚仪,冲片机,低温脆性测定仪,热变形维卡温度测定仪,熔融指数仪,熔体流动速率仪,橡胶可塑度仪,橡胶密度计,橡胶冲击弹性试验机,缺口制样机,简支梁冲击试验机,数显疲劳龟裂试验机,电压击穿试验仪,气象色谱仪,水蒸气透过率测定仪,气体渗透仪