关键字:V锥流量计原理,V锥型流量计,内锥流量计
V锥流量计是一种差压流量计,它的开发成功是差压式流量测量质的飞跃,它利用V锥体在流场中产生的节流效应,通过检测上下游压差来测量流量。与普通节流件相比,它改变了节流布局,从中心孔节流改为环状节流。
实践使用证明,V锥流量计与其他流量仪表相比,具有长期精度高、稳定性好,受安装条件局限小、耐磨损、测量范围宽、压损小、适合赃污介质等优点。而且V锥体本身作为流场的整流器而成为一种具有独特性能的优异的新型流量计。由V锥传感器和差压变送器组合而成的V锥流量计,可精确测量宽雷诺数(8×103≤Re≤5×107)范围内各种介质的流量。FFM61型V锥流量计主要技术参数·精度等级:0.5级(差压流量变送器精度应高于0.2级,含0.2级),(β:0.45~0.85,当β<0.55,量 程比4∶1时,精度等级:≤0.30)·重复性:0.11%·工作压力:0~40MPa(有多个压力等级可供选择)·工作温度:-40~851°C·环境温度:-42~65°C、·安装直管段要求:前0-3D直管道,后0-1D直管段·量程比宽:通常为10∶1,选择合适的参数可达到50∶1·压损小:同样的β值,压损是孔板1/3~1/5·口径从DN25~DN2000FFM61型V锥流量计的技术特点:1、安装要求低:前0~3D直管道,后0~1D直管段;2、量程比宽:通常为10∶1,选择合适的参数最高可做到50∶1;3、压损小:同样的β值,压损是孔板1/3~1/5;4、耐磨损:流线型锥形体节流后,在锥形体表面产生真空层效应,使得锥形体不易磨损;5、不堵塞,不粘附:锥形彻底吹扫式设计避免了流体中的残渣、凝结物或颗粒的滞留;6、长期稳定性好:β值可长期不变,并保证长期精确测量;7、精度高:0.52级;8、重复性好:优于0.122%;9、信号稳定:"信号波动"是孔板的1/10;10、β值范围宽:V锥流量传感器独特的几何形状允许有广泛的β值范围;11、口径范围宽:DN25~DN2000;12、可测高温、高压介质:工作温度最高850℃, 最大压力40MPa;13、可测脏污介质(焦炉煤气、高炉煤气、原料油、渣油等);14、可测气液两相介质(湿气、冷凝水等);1.法兰型FFM61S连接方式:法兰(平焊和对焊)口径:DN15~DN2000取压方式:承插焊,法兰,螺纹压力:0~40MPa温度:-40~850℃材质:304不锈钢、316L不锈钢、20#碳钢(详见选型表)应用:液体,气体,蒸汽适用介质:广泛地应用于市政、电力、化工、石油化工、冶金、食品加工等行业中流量测量,几乎适用于所有气体、液体介质。(1)对流体的均速作用 流体在管道中流动实际上是这样一种状态,当流体流动不受任何阻碍和干扰达到充公发展状态时,其速度分布为:越靠近管道中心流速越快,在中心处达到最快、越靠近管壁流速越慢,在管壁处接近零。大多数流量仪表测量流量涉及到流速时,由于无法改变这种快慢不均的状态,只能忽略管道中流速有快慢之分的实际情况而假设流速是均等的。而 塔型(形)流量计由于锥形体处在管道中心,它直接把流体从高速流动的中心部位分开,使流速快的流体分别向四周流速慢的流体靠拢并拉动它们混合一起流动,这种快慢混合的结果就是:原本流速快慢的差别消失了,流体变成了真正的均匀流动。流体流速被均匀化所带来的好处就是:测量信号真实反映了被测流体的实际值,并使得在低流速时 塔型(形)流量计前后仍能产生足够准确的差压,随着流速的降低,这种作用更加显著,而这种情况对于传统的差压式仪可能早已不能测量了(见图3)(2)具有很强的抗干扰(旋涡流)能力大家都知道流体流动遇到阻挡物时会产生“旋涡流”,这就是著名的“卡曼旋涡”现象,涡街流量计就是基于这个原理工作的。同样道理象孔板、锥开体等节流件在管道中也是阻挡物,在节流件后部除了产生静压力外必然也会产生旋涡流。然面这个旋涡流对于涡街流量计来讲是有用的信号对于差压式仪表来讲却是有寄存器的干扰,见(图4)。这个干扰在节流件下流(负压端)会产生“信号跳动“现象,它会严重干扰正常信号的测量。塔形的结构是边壁节流,节流件后部产生干扰流的分布是等量相反(对称分布)而相互抵消,因此使干扰程度大大减轻。而孔板等传统节流件是中心节流,产生的干扰流方向直接指向取压口,严重干扰了测量信号,特别是小流量时干扰甚至大于测量信号而无法正常工作。经过大量的试验和科学检测证明(3)对流体的整流功能绝大多数流量仪表要求足够长的前后直管段,目的就是为了使流体流动状态成为充分发展管流以复现实验条件下的流动状态。然而这种苛刻的要求常常由于复杂的现场(如各种阀门、弯头、缩径、扩径、泵等)而不能满足,所带来的结果必然是测量误差的增大。因此,绝大多数流量仪表很难在不满足直管段条件下取得准确的测量值。而 塔型(形)流量计却不同,由于它边避节流的特殊结构,使得流体在遇到V形节流件时,被强迫按照“管壁与节流件之间由宽逐渐变窄的狭长通道”内流动,该通道可以等效为一个管式整流器,经过这个通道后,各种干扰流的变化为:不规范流动——被迫在规定的通道流动——变成规范流动。因此它能够对上游处因各种外界因素引起的不规则的流动畸变自动进行矫正整流,从而使达到测量区的流动形成了规则的流动。因此只需极短的直管段也能取得准确的测量值,由此大大减轻了用户的工作量和投资,这是大多数流量仪表无法相比拟的。(4)节流件耐磨损的特点我们都知道节流式差压仪表的测量精度是靠它的“几何尺寸”保证的,这一点塔形与孔板是一样的。但是由于孔板测量关键部位易磨损,它的测量误差随着使用时间在缓慢变大。而从 塔型(形)流量计的节流件结构可以看出:其关键的节流边缘是处在节流件后部的钝角,并顺着流体方向。当流体流过节流件表面和管壁间的通道时,会形成“边界层效应”,该效应会使流体到达测量部位前,逐渐离开了节流边缘一个微小的距离,这样就使被测流体不与节流件关键部位接触,因此就不可能有磨损情况发生,其关键部位的几何尺寸(β值)就能保持长期不变。所以不用重复标定也能长期稳定工作。(图9)(5)自清洁功能如前所述,由于流体在靠近管壁处的流速变慢极容易使脏污物等沉淀或附着在管壁上,对于孔板等传统差压仪表还会在前面堆积。那么流体在塔形流量计流动时会是一种怎样的情况?当流体进入测量管并流过节流件四周的通道时,由于该通道是管壁与节流件间形成的由宽逐渐变窄的通道,它博士流体流动速度高于管道其他部位并逐渐加快,在到达节流件测量的关键部位时流速最快,从而对管壁、节流件表面附近形成了吹扫冲刷作用,所有脏污杂物不可能在这里停留或附着,所以不会产生脏污的积垢,更不存积垢死角。 塔型(形)流量计这一独特的吹扫式设计,决定了它用在高炉煤气、焦炉煤气等脏污流体测量中,不会使粉尘、焦油等脏物在节流件和管壁附近堆积,附着及堵塞取压孔。(图10)(6)强大防堵功能的专利技术上述介绍的塔形流量计的自清洁功能,当流体属于特脏型或含有大量粉尘杂质时,常规的V 型(形)流量计有时也不能彻底解决,国内外实际使用中,时有发生因堵塞取压孔而导致测量失败的事例。为此飞龙公司经过一年多的试验已于去年研制成功三项具有中国独立知识产权的专利技术产品:具有可控加热的 塔型(形)流量计;具有喷涂特殊材料涂层的 塔型(形)流量计;具有多孔取压的 塔型(形)流量计;专用于高炉、焦炉煤气等特脏污流体流量的测量。加油极强的防堵功能,该产品目前在国内国际都处于领先地位。已出口“南非MITTAL STEEL NEWSASTLE 2号焦炉”项目。(7)在设计计算上比标准节流件准确对这个问题下面以计算孔板为例来说明。在孔板计算中用户必须把管道直径“D”值提供给计算者,D参数是设计孔板的一个重要数据,因此标准中对它有严格的规定:要求在节流件前(0~0.5)D长度上,至少取3个截面测出12个数据,然后取其平均值作为D值来计算孔板。然而这个规定在实际中很难做到,因为大多数情况都是在原有的工艺管道上后安装 塔型(形)流量计,不可能为了测量D值而停车割开管道,大多数习惯上都是以公称直径报给设计者(除非连同直管段一道购买加工)。我们知道管道的尺寸通常是以公称值来标注的,而钢管产品是按外径和壁厚系列组织生产的。不同的壁厚可以导致同一系列的钢管直径相差最大达十毫米之多,以这样不准确D值来计算节流件,其结果就是“假值真算”,再高级的计算软件算出来结果也是不会准确的。塔型(形)流量计,是把测量管和连接法兰整体焊接在一起的一个产品,虽然D值的要求也很严格,但是这个工作是由仪表制造厂家来做的。测量管是在制造厂进行准确测量或者进行机械加工来达到所要求数值,根本不需要用户再为管道的D值是否精确而为难,用户只要把管道的壁厚系列提供给仪表厂以便选配同系列的测量管就可以。由于塔形流量可以把D值控制的非常精确,从而避免了孔板等差压式仪表因D值不准确而带来的计算上的误差。(8)压力损失小塔型(形)流量计的结构特点是流线型节流件,采用“逐渐节流方式”工作,完全不同于孔板等传统差压式仪表“突然节流”的工作方式,所以它的压力损失小,约是孔板的1/3。因此对于那些“低压力、大流量”流体测量来讲,比传统差压式仪表有很大的优越性。
(9)流量计的检定流量计的检定执行中华人民共和国检定规程:JJG640-1994“差压式流量计检定规程”。
JYLH V形锥流量计源于美国McCROMETER,是一种极具优势的新型差压式流量仪表。从二十几年前诞生开始,就以其常规差压仪表无法相比的的诸多优点,迅速在流量测量领域得到了广泛的应用和好评。V锥流量计是一种的差压式流量计量装置,它以独特的边壁逐步收缩节流方式,一改传统节流装置的几乎所有的缺点,是差压流量计革命性成果。其原理与其他差压式流量计一样,是经典的密闭管道中能量守恒原理和流动连续性原理,并具有自整流、自清洗、自保护功能;直管段要求极短,无积污、堵塞,可保持稳定性;锥体后端高频低幅的小噪声使测量下限相对很低,从而使量程比达15:1;其压损只及孔板的1/3和文丘里管相似。因此,V锥流量计可广泛应用于石油、化工、电力、供热等国民经济各领域。
一、V形锥流量计的应用范围测量介质:气体类:(煤气、空气、氢气、天然气、氮气、液化石油气、过氧化氢、烟道气、甲烷、丁烷、、燃气、沼气、二氧化碳、氮气、乙炔、光气、氧气、压缩空气、氩气、甲苯、苯、二甲苯、硫化氢、二氧化硫、氨气)等
液体类:(甲醇、乙醇、酒精、丙酮、苯乙烯、二甲苯、液氧、双氧水、氯化钙、碳酸钠、碱性流量计、草酸流量计、次氯酸、明矾、甲酸、耐酸流量计、乙酸流量计、磷酸流量计、氢氟酸流量计、醋酸流量计 、冰醋酸流量计、王水流量计、硫酸流量计、盐酸流量计、导热油、液压油、燃料油、机油、沥青、石蜡、绝缘油、原油、牛奶、蒸馏水、啤酒、汽油、渣油、轻油流量计、重油流量计、煤油流量计、柴油流量计、油流量计 、循环水流量计、冷却水流量计、纯净水流量计、离子水流量计、污水流量计、水流量计)。
蒸汽类:(过热蒸汽、饱和蒸汽)
二、主要特点精度高:V锥型流量计[2]的精度为测量值的±0.5%,贸易计量级为±0.3%(系统精度需参照应用条侏及二次仪表的精度)。
重复性好:V锥型流量计的重复性很好,为±0.1%。
量程比宽:V锥型流量计的量程较其它类型的差压流量计大得多,正常情况下为10:1,若有必要不是也可加大。在雷诺数高于8000时输出信号为线性,若低于8000也可测量,但需对输出信号根据曲线进行修正。
直管段要求低:伯努力方程要求受测流体为理想流体,在实际应用中这是根本不可能的,很多情况会造成流体分布不均匀,如弯头,阀门,缩径,扩径,泵,三通等等,对其它仪表而言,这是一个很难解决的问题。V锥流量计可在极为恶劣的情况下均匀流体分布,如在紧邻仪表上游有单弯管,双弯管,经过锥体“整流”后的流体分布比较均匀可仪表在恶劣的条件下获得较高的测量精度,由于V型流量计可均匀流体分布曲线,因此同其它类型的差压流量计相比,对上下游直管段的要求小,建议安装时在上游留0-3D的直管段,在下游留0-1D的直段管。当用户的管道尺寸大,管道价格高或直管段不够的情况下,V锥型流量计将是选择。在过去十年内,对V型流量计的上游有一个90℃的单弯管或两个不在一个平面上的双弯管的情况进行了测试,测试结果表明,V锥型流量计可在紧邻它的地方装有一个弯管或不在同一个平面上的双弯管而不会对测量精度有影响。
流量计特有结构所形成的边界层效应,使节流件关键部位不会磨损,因此可以保持几何尺寸不变,因此能稳定工作而无须标定。
流量计是纯机械体,因此耐高温、耐高压、耐腐蚀及不怕振动。
可测的流体广泛(液体、气体、蒸汽),测量范围宽(微小流量~大流量),适用的管径DN15~DN3000。
塔形(V形锥)流量计与其它差压式流量仪表原理相同,也是一种节流式差压流量计。塔形(V形锥)的出现,打破了沿袭近百年的结构模式,使得节流式差压仪表产生了“质的飞跃”。塔形(V形锥)流量计的重大突破在于“变流体在管道中心中心收缩为边壁收缩”。 该流量计采用了多孔取压、环室取压,一体化安装等多项专利技术。广泛用于特脏污流体中的计量(如:钢铁厂的焦炉煤气、高炉煤气等)。
三、重大突破V锥流量计的重大突破在于“变流体在管道中心中心收缩为边壁收缩”。即利用同轴安装在管道中的V形锥体,迫使流体从中心逐渐收缩到管道内壁而流过V形锥体,通过测量V形锥体前后的差压来求得流量。正是这个边壁收缩的结构,使其具有一系列其它差压仪表无法相比的优点,克服了以孔板为代表的传统差压仪表的诸多缺点,可以说这是流量仪表一场革命性的变化,从此揭开了差压式仪表崭新的一面。
四、V锥的节能效果对于流量仪表来讲,耗能的高低取决于流量计的压力损失,压损大的耗能
大,压损小的耗能小。由于在冶金行业中孔板仪表使用的较多,下面把孔板与V锥
压力损失做一个对比,看一看二者在测量流量过程中能耗的大小。
举例1:某厂饱和蒸汽流量测量,管道内径257;工作绝压0.9MPa;工作温度
175.35℃;密度4.655kg/m3;最大流量30t/h;常用流量20t/h。
孔板和V锥取相同的β=0.6。
计算结果如下(有关计算公式及计算过程见光盘资料):
常用流量20t/h时,孔板的压力损失为:14.162kPa
V锥的压力损失为:6.523kPa
孔板比V锥的压力损失大7.639kPa ,在输送同样流量条件下,孔板比V锥每小时
多耗能11.395kW/h。如果按照目前工业平均电能费0.8元/(kW.h),一年按开车
300天计算,仅一套孔板流量计将比V锥流量计每年多支出电费:
0.8(元)×11.395(kW/h)×24(小时)×300(天)=6.563万元
举例2:高炉煤气,管道内径:702.4mm,工作压力(G):12kPa,温度:70℃,
当地大气压:98.39kPa,工作密度1.0326kg/m3,常用流量25000m3/h
孔板和V锥取相同的β=0.6955。计算结果如下:
在常用流量下 孔板的压力损失为:1.894kPa
V锥的压力损失为:0.479kPa
孔板比V锥的压力损失大1.415kPa ,在输送同样的流量条件下每小时多耗能
12.283kW/h。按照工业电能费0.8元/(kW.h),每年按开车330天计算,仅一套孔
板流量计将比V锥流量计每年多支出电费:
0.8(元)×12.283(kW/h)×24(小时)×330(天)=7.783万元
通过以上计算可以看出,平时并未引起我们重视的一套小小流量计量,在选用
何种类型的仪表上,竟有如此大的潜力(或如此大的浪费没有发现)可以挖掘,可
见V锥流量计的节能效果是非常显著的。在我国电力能源目前尚供应不够充足的情
况下,使用节能的流量仪表不但为企业本身创造了利润,也符合国家倡导的节能减
排的产业政策。
五、V形锥产品类型对于塔形流量计,一次传感器部分是指流量计本体如何与工艺管道连接的工作、尽管流量计有多种结构形式,如:管道式、夹装式、对焊式等。如果描述不作特殊说明,安装方法是等同的。由于流量计具有对流体流动状态整流的功能,因此一次传感器部分的安装要求远不孔板等相对宽松的多。由于流量计是管段式,它与工艺管道的同轴度、垂直度无严格的要求。
1、管道法兰式:是指流量计两端有安装法兰。与工艺管道两端同规格的安装法兰(也称用户法兰)连接,是比较常用的结构形式,适用的口径(DN50mm~3000mm)。此种形式适用于节流装置与差压变送器分体安装时选用,一般常用于测量蒸汽流量时使用,在测量其他高温介质时也可以使用。
2、法兰夹装式:用于小口经流量计的安装形式,每台流量计玉工艺管道只需2片法兰。法兰与工艺管道焊接在一起,再把流量计夹装在两法兰之间。此中安装方法与涡街流量计(≤300mm)安装方法相同。
3、小口径一体化式:适用口径≤DN40mm,介质温度≤120℃的流体。该结构是把差压变送器直接与塔形流量计组合成一个整体。二者之间无导压管、取压阀、三阀组。使安装变的非常简单(与涡街流量计安装方法相同) 。差压变送器调节零点时需要关闭工艺管道的阀门,就可以调零。
注意:此安装方式,不能用于测量高温介质的场合,是因为高温介质会进入差压变送器测量室内,损坏变送器测量膜片。
4、管道对焊式:是指塔形流量计与工艺管道无法兰连接(流量计本体无法兰),安装时直接把流量计与工艺管道焊接在一起。该结构成本相对较低(减少4片法兰的成本),属于一次性安装。一般用于较大口径的场合。
5、常规流体一体化式:是指介质温度≤120℃的流体,适用管径:DN50~DN3000。生产厂家根据不同的流体和用户要求,出厂时在流量计上为用户焊接(或装配)好阀门和三阀组。在现场安装时由用户把流量计与变送器组装在一起即可。
6、蒸汽一体化式:是指测量蒸汽流量时,把变送器与塔形流量计组装在一起,变送器与流量计之间要装配我公司“蒸汽专用三阀组”部件,从而取消了导压管并大大简化了取压结构。
7、液体防冻式:是指塔形流量计与变送器之间装由我公司“液体专用隔离罐”,罐中装有特殊介质,该介质能在较低的温度下不冻结。此种安装方式在测量液体时,特别在北方冬天室外环境比较低的情况下。往往变送器测量室种的液体容易冻结,损坏变送器。
8、方形管道法兰式:是指工艺管道为方形管,而流量计测量管为圆形管道,二者通过一个特制的“方-圆”连接件进行连接。
六、工作原理锥形流量计是一种差压型的流量仪表。以差压原理设计的流量仪表已经有了一百多年的应用历史了,差压型流量计是基于密封管道中的能量转换原理,也就是说对于稳定流体,管道压力与管道中的介质流速的平方根成反比:速度增加压力会下降,当介质接近锥体时,其压力为P1,在介质通过锥体的节流区时,速度会增加压力会降低为P2,如图1所示,P 1和P2都通过锥形流量计的取压口引到后接差压变送器上,流速发生变化时,锥形流量计的两个取压口之间的差压值会增大或缩小。当流速相同时,若节流面积大,则产生的差压值也大, β值等于锥体的节流面积除以管道内径的截面积(可换算成两者之间的直径比)。
公司名称:江苏润东仪表科技有限公司公司网址:http://www.jsrdkj.com
型 号 | 说 明 | ||||||||||||||||||||||||||||||||||||||
RD-LVD | V锥形流量计 | ||||||||||||||||||||||||||||||||||||||
仪表口径 (mm) | 50 | DN50 | |||||||||||||||||||||||||||||||||||||
100 | DN100 | ||||||||||||||||||||||||||||||||||||||
… | … | ||||||||||||||||||||||||||||||||||||||
3000 | DN3000 | ||||||||||||||||||||||||||||||||||||||
部件材料材质 | 锥体 | 钢管 | 法兰 | ||||||||||||||||||||||||||||||||||||
A | SS304 | 20# | 20# | ||||||||||||||||||||||||||||||||||||
B | SS304 | 15CrMo | 15CrMo | ||||||||||||||||||||||||||||||||||||
C | SS304 | SS304 | 20# | ||||||||||||||||||||||||||||||||||||
D | SS304 | SS304 | SS304 | ||||||||||||||||||||||||||||||||||||
E | SS316L | SS304 | SS304 | ||||||||||||||||||||||||||||||||||||
G | SS316L | SS316L | SS316L | ||||||||||||||||||||||||||||||||||||
# | 其它材质 | ||||||||||||||||||||||||||||||||||||||
测量介质 | 1 | 液体 | |||||||||||||||||||||||||||||||||||||
2 | 气体 | ||||||||||||||||||||||||||||||||||||||
3 | 蒸汽 | ||||||||||||||||||||||||||||||||||||||
4 | 高温介质 | ||||||||||||||||||||||||||||||||||||||
补偿形式 | N | 不带压力、温度补偿 | |||||||||||||||||||||||||||||||||||||
Q | 带压力、温度补偿输出 | ||||||||||||||||||||||||||||||||||||||
连接形式 | L | 螺纹连接(适用于小口径) | |||||||||||||||||||||||||||||||||||||
W | 法兰连接 | ||||||||||||||||||||||||||||||||||||||
压力等级 | 2 | 1.0 MPa | |||||||||||||||||||||||||||||||||||||
4 | 2.5 MPa | ||||||||||||||||||||||||||||||||||||||
5 | 4.0 MPa | ||||||||||||||||||||||||||||||||||||||
6 | 6.3 MPa | ||||||||||||||||||||||||||||||||||||||
可选附件 | J | 带截止阀 | |||||||||||||||||||||||||||||||||||||
L | 带冷凝管 | ||||||||||||||||||||||||||||||||||||||
S | 带三阀组 | ||||||||||||||||||||||||||||||||||||||
CB | 差压变送器 | ||||||||||||||||||||||||||||||||||||||
XJ | 流量积算仪 | ||||||||||||||||||||||||||||||||||||||
BC | 温压补偿带温度与压力传感器 | ||||||||||||||||||||||||||||||||||||||
压力计
HR-WV供应V锥流量计
AKTVD型差压式V锥流量计AKTVD型差压式V锥流量计 概 述 AKTVD型V锥流量计是一种新型的高精度差压式流量计。通过在密闭的管道中心线悬挂一个特别的流线形锥体来进行中央节流,用上游管壁和锥体尾部测量的差压来计算流量,故名V锥流量计。由于V锥流量计独特的结构设计,其性能较于其他差压式流量计更优。 AKTVD型V锥流量计与其它差压式流量计一样,都是基于密闭管道中能量转换的伯努利定律进行测量,即在稳定的流场情况下,介质的流速与差压的平方根成正比。当介质以一定的速度向锥尖方向流过时,由于锥体的节流作用,会使锥体下游立即形成低压区P2,锥体上游的高压P1与下游的低压P2间有一压差△P,压差△P经取压口送至差压变送器,根据差压的变化可以测量出流量的变化。 流量测量系统组成 AKTVD型V锥流量计由内置锥体节流件与三阀组、散热件、引压管、差压变送器、流量计算机组成流量测量系统。对于气体和蒸汽等介质,可加温度、压力补偿,组成质量流量和标准体积测量系统。AKTVD型V 锥流量计分:精确管道型(DNl5~DN900或更大);对夹型(DNl5~DNl50) 产品特点 1、精度高,重复性好: V锥流量计的精度为测量值的0.5%,重复性为0.2% 2、量程比宽,压损低: V锥流量计正常情况下量程比为10:1.参数准却可以做到30:1,V椎流 量计压力损失仅为孔板的1/5-1/10,可大大降低运行能耗。 3、安装直管段要求低: 由于V锥流量计独特的中心流线形节流结构,很好地解决了直管段整流 的问题,将不规则的流体直接整流成理想流体,前直管段0~3D,0~ 1D。4、稳定性好:
锥体的独特设计、了流体在流经椎体时,是一种渐变的过程,无 突变,流量先经过锥体后,在到达锥边,因此,锥体不会经常性受到 流体的磨损,β值可保持不变,故仪表使用面无需重标定。 5、应用范围广,可测高温压和复杂工作介质: V锥流量计与孔板节流装置一样,工作温度与压力取决与管道和法兰的 材质与等级。特殊节流体,使其可测量多相水流,电磁干扰介质,各 各种混合气体等。非常适合测量如蒸汽、煤气、原油等脏污介质。V锥 流量计运用工况范围非常广,温度-100℃~500℃,最大压力40MPa,雷 诺数范围广8×103~5×106。气体:煤气、天然气、空气、氧气、氢 气、甲烷丙烯、烟气、饱和蒸汽、过热蒸汽等。液体:水、油品、乳 化液、纯水、双氧水、甘油、醇类、净水、污水、各种腐蚀性介质等 6、具有自清洁能力 差压式V锥流量计的特殊设计,使其椎体不存在死区,因次在椎体上不 会堆积流体的碎纸、粘渣和杂质,具有自清洁功能。 订货时请提供如下参数: 1、口径(单位:mm) 2、测量介质名称 3、最大测量范围 4、正常工作范围 5、最小工作范围 6、工作压力 7、工作温度 8、介质密度 9、介质粘度 10、使用当地平均大气压力
TC-LGBV锥流量计
法兰型V锥流量传感器 2.直接焊接型FFM61Z连接方式:直接焊接到工艺管线口径:DN15~DN2000取压方式:承插焊,法兰,螺纹压力:0~40MPa温度:-40~850℃材质:304不锈钢、316L不锈钢、20#碳钢(详见选型表)应用:输油管,输气管,蒸汽管网,高压工艺管线 3.夹持型 FFM61D连接方式:法兰端面对夹口径:DN15~DN150取压方式:承插焊,螺纹压力:0~40MPa温度:-40~850℃材质:304不锈钢、316L不锈钢、20#碳钢(详见选型表)应用:液体,气体,蒸汽
的性能是如何实现的 (1)对流体的均速作用 流体在管道中流动实际上是这样一种状态,当流体流动不受任何阻碍和干扰达到充公发展状态时,其速度分布为:越靠近管道中心流速越快,在中心处达到最快、越靠近管壁流速越慢,在管壁处接近零。大多数流量仪表测量流量涉及到流速时,由于无法改变这种快慢不均的状态,只能忽略管道中流速有快慢之分的实际情况而假设流速是均等的。而 塔型(形)流量计由于锥形体处在管道中心,它直接把流体从高速流动的中心部位分开,使流速快的流体分别向四周流速慢的流体靠拢并拉动它们混合一起流动,这种快慢混合的结果就是:原本流速快慢的差别消失了,流体变成了真正的均匀流动。流体流速被均匀化所带来的好处就是:测量信号真实反映了被测流体的实际值,并使得在低流速时 塔型(形)流量计前后仍能产生足够的差压,随着流速的降低,这种作用更加显著,而这种情况对于传统的差压式仪可能早已不能测量了(见图3) (2)具有很强的抗干扰(旋涡流)能力 大家都知道流体流动遇到阻挡物时会产生“旋涡流”,这就是的“卡曼旋涡”现象,涡街流量计就是基于这个原理工作的。同样道理象孔板、锥开体等节流件在管道中也是阻挡物,在节流件后部除了产生静压力外必然也会产生旋涡流。然面这个旋涡流对于涡街流量计来讲是有用的信号对于差压式仪表来讲却是有寄存器的干扰,见(图4)。这个干扰在节流件下流(负压端)会产生“信号跳动“现象,它会严重干扰正常信号的测量。塔形的结构是边壁节流,节流件后部产生干扰流的分布是等量相反(对称分布)而相互抵消,因此使干扰程度大大减轻。而孔板等传统节流件是中心节流,产生的干扰流方向直接指向取压口,严重干扰了测量信号,特别是小流量时干扰甚至大于测量信号而无法正常工作。经过大量的试验和科学检测证明: (3)对流体的整流功能 绝大多数流量仪表要求足够长的前后直管段,目的就是为了使流体流动状态成为充分发展管流以复现实验条件下的流动状态。然而这种苛刻的要求常常由于复杂的现场(如各种阀门、弯头、缩径、扩径、泵等)而不能满足,所带来的结果必然是测量误差的增大。因此,绝大多数流量仪表很难在不满足直管段条件下取得的测量值。而 塔型(形)流量计却不同,由于它边避节流的特殊结构,使得流体在遇到V形节流件时,被强迫按照“管壁与节流件之间由宽逐渐变窄的狭长通道”内流动,该通道可以等效为一个管式整流器,经过这个通道后,各种干扰流的变化为:不规范流动——被迫在规定的通道流动——变成规范流动。因此它能够对上游处因各种外界因素引起的不规则的流动畸变自动进行矫正整流,从而使达到测量区的流动形成了规则的流动。因此只需极短的直管段也能取得的测量值,由此大大减轻了用户的工作量和投资,这是大多数流量仪表无法相比拟的。 (4)节流件耐磨损的特点 我们都知道节流式差压仪表的测量精度是靠它的“几何尺寸”的,这一点塔形与孔板是一样的。但是由于孔板测量关键部位易磨损,它的测量误差随着使用时间在缓慢变大。而从 塔型(形)流量计的节流件结构可以看出:其关键的节流边缘是处在节流件后部的钝角,并顺着流体方向。当流体流过节流件表面和管壁间的通道时,会形成“边界层效应”,该效应会使流体到达测量部位前,逐渐离开了节流边缘一个微小的距离,这样就使被测流体不与节流件关键部位接触,因此就不可能有磨损情况发生,其关键部位的几何尺寸(β值)就能保持不变。所以不用重复标定也能稳定工作。(图9) (5)自清洁功能 如前所述,由于流体在靠近管壁处的流速变慢极容易使脏污物等沉淀或附着在管壁上,对于孔板等传统差压仪表还会在前面堆积。那么流体在塔形流量计流动时会是一种怎样的情况?当流体进入测量管并流过节流件四周的通道时,由于该通道是管壁与节流件间形成的由宽逐渐变窄的通道,它博士流体流动速度高于管道其他部位并逐渐加快,在到达节流件测量的关键部位时流速最快,从而对管壁、节流件表面附近形成了吹扫冲刷作用,所有脏污杂物不可能在这里停留或附着,所以不会产生脏污的积垢,更不存积垢。 塔型(形)流量计这一独特的吹扫式设计,决定了它用在高炉煤气、焦炉煤气等脏污流体测量中,不会使粉尘、焦油等脏物在节流件和管壁附近堆积,附着及堵塞取压孔。(图10) (6)强大防堵功能的专利技术 上述介绍的塔形流量计的自清洁功能,当流体属于特脏型或含有大量粉尘杂质时,常规的V 型(形)流量计有时也不能解决,国内外实际使用中,时有发生因堵塞取压孔而导致测量失败的事例。 为此飞龙公司经过一年多的试验已于去年研制成功三项具有中国独立知识产权的专利技术产品: 具有可控加热的 塔型(形)流量计; 具有喷涂特殊材料涂层的 塔型(形)流量计; 具有多孔取压的 塔型(形)流量计; 专用于高炉、焦炉煤气等特脏污流体流量的测量。加油极强的防堵功能,该产品目前在国内国际都处于领先地位。已出口“南非MITTAL STEEL NEWSASTLE 2号焦炉”项目。 (7)在设计计算上比标准节流件 对这个问题下面以计算孔板为例来说明。 在孔板计算中用户必须把管道直径“D”值提供给计算者,D参数是设计孔板的一个重要数据,因此标准中对它有严格的规定:要求在节流件前(0~0.5)D长度上,至少取3个截面测出12个数据,然后取其平均值作为D值来计算孔板。然而这个规定在实际中很难做到,因为大多数情况都是在原有的工艺管道上后安装 塔型(形)流量计,不可能为了测量D值而停车割开管道,大多数习惯上都是以公称直径报给设计者(除非连同直管段一道购买加工)。我们知道管道的尺寸通常是以公称值来标注的,而钢管产品是按外径和壁厚系列组织生产的。不同的壁厚可以导致同一系列的钢管直径相差最大达十毫米之多,以这样不D值来计算节流件,其结果就是“假值真算”,再的计算软件算出来结果也是不会的。 塔型(形)流量计,是把测量管和连接法兰整体焊接在一起的一个产品,虽然D值的要求也很严格,但是这个工作是由仪表制造厂家来做的。测量管是在制造厂进行测量或者进行机械加工来达到所要求数值,根本不需要用户再为管道的D值是否精确而为难,用户只要把管道的壁厚系列提供给仪表厂以便选配同系列的测量管就可以。由于塔形流量可以把D值控制的非常精确,从而避免了孔板等差压式仪表因D值不而带来的计算上的误差。 (8)压力损失小 塔型(形)流量计的结构特点是流线型节流件,采用“逐渐节流方式”工作,不同于孔板等传统差压式仪表“突然节流”的工作方式,所以它的压力损失小,约是孔板的1/3。因此对于那些“低压力、大流量”流体测量来讲,比传统差压式仪表有很大的性。 (9)流量计的检定 流量计的检定执行中华人民共和国检定规程:JJG640-1994“差压式流量计检定规程”。 技术指标及含应用范围度:±0.5%重复性:±0.1%量程比:10:1~15:1直管段要求:上游1~3D 下游0~1D雷诺数:8000~1×107适用管径:DN15~DN3000温度:-50℃~550℃公称压力:0~30MPa
LCLVV锥流量计金湖立创自控设备有限公司出品 我司主要生产:V锥流量计,金属管浮子流量计,磁浮子液位计,明渠流量计,一体化孔板流量计,阿牛巴流量计,远传型磁性翻版液位计,PID调节仪,智能手操器,压力校验台 联系方式:手 机:18915184008 电 话:86-0517-86989366 传 真: 86-0517-86989266 LCLV 锥流量计(又称内锥、V锥、V型锥流量计)是新一代差压式流量计测量仪表,由专用的节流装置锥形管与通用的差压变送器、二次仪表配套组成。锥形管是专利技术产品,对传统的差压装置作了很大的技术改进,它由一圆形测量管和置入测量管内并与测量管同轴的特型芯体构成。芯体与测量管内圆柱面之间构成异径环型过流缝隙,对流过的流体进行节流,其节流过程同环型孔板、经典文丘里管的节流过程相似。锥形管的特殊结构,的消除了目前在用孔板、喷嘴的性能缺陷,使之在使用过程中不存在类似孔板等节流件的锐缘磨蚀与积污问题,并能对节流前管内流体速度分布梯度及可能存在的各种非轴对称速度分布进行非常的流动调整(整流),从而能实现高精确度与高稳定性的流量测量。锥形管流量计可用于对各种液体、气体和蒸汽的测量,是标准孔板等传统节流式仪表的理想换代产品,为改善目前的工业、能源计量效果,提供了一项、的计量手段。 2、产品技术性能特点 LCLV 锥形流量计具有测量精确度高、高性与强适应性(以上简称双高一强)的技术特点,符合现代计量仪表的性能要求。 高精确度:流出系数不确定度±0.5%(量程比10:1) 流出系数不确定度±0.3%(量程比4:1) 高性:一次件差压装置结构简单、坚固、经久耐用,且防堵性好,配套差压变送器技术发展成熟、稳定。ZBZ产品成功应用于工业、能源诸多行业、多种计量场合,全部运行状况良好,测量性能稳定,因产品自身问题引发的故障率为零。 强适应性:LCLV锥形流量计产品对测量条件适应性较强,为其它一切流量计所不及。这也是锥形管产品在使用过程中能保持高精确度与高性的主要原因之一。具体表现在以下几点: (1)对被测流体性质、工况及现场环境条件适应性强,不但能高精度地测量洁净的一般性流体,也可以测量高粘度流体、高含湿气体、含固体微粒流体和其它脏污流体,并能适应高温、高压、低温、低压工况条件和强振动等恶劣环境条件。 (2)适测雷诺数范围宽,雷诺数上限无限制,下限也可以很低,因而既可测高流速大流量,也能测低雷诺数小流量,特别是其可测量的流量下限值,远低于旋进旋涡、涡街等流量计。 (3)量程比宽: 10:1以上,可以满足一般工业、能源计量要求。(4)对仪表入口前直管段要求低,仅为3D,远远低于孔板、喷嘴及涡街、涡轮等其他速度式流量计. 3、产品性能机理简析 LCLV锥形流量计为何能有如此的技术性能?最基本的原因是靠其简单而又科学合理的结构及其所形成的节流模式。 应当说,锥形管是环形孔板与经典文丘里管的技术再发展,它将环形孔板、经典文丘里管、耐磨孔板以及锥形入口孔板的性能优(特)点融合在一起,消除了孔板的计量性能缺陷,使之形成了一项具有”择优遗传杂交”特点的新型节流式流量测量仪表。标准孔板的主要计量性能缺陷: ①使用过程中,非常容易发生节流件锐缘磨蚀和积污,造成流出系数逐渐改变,导致难以控制的流量测量误差。 ②在中低雷诺数测量区,流出系数随流量工况变化而变化的幅度较大,导致系统性的测量误差。 ③安装直管段要求过高,以及孔板安装的严格规范要求难以达标,往往造成使用安装附加误差较大,该误差往往难以定量评估。 ④ 压损大 环形孔板的计量情况优点: (1)有充分的试验数据表明,它对清除来自上游的流动干扰所造成的非轴对称性速度分布的能力极强,对入口的直管段要求低。 (2)不存在节流件积污,可测混相流。 经典的文丘里管的计量性能优点: (1)对入口的直管段要求较低。 (2)积污小,压损小。 (3)可测混相流。 耐磨孔板与锥形入口孔板的计量性能优点: (1)无锐缘磨蚀,流出系数比较稳定。 (2)锥形入口孔板还可实现小雷诺数测量。 4、产品个性化设计技术 LCLV锥流量计为何能有如此好的技术性能?除产品结构这一基础因素以外,产品实现个性化设计,也是一项非常重点的技术措施,使之对不同管径的不同测量条件都能取得满意的测量结果。 如何适应不同的测量条件,产品具体结构尺寸的合理搭配是关键。目前我公司对此已形成系列化产品设计规范,届时可根据用户测量条件(介质性质、工况条件、测量范围等)与测量要求,进行有针对性的个性化设计,在宏观相似一致的前提下,科学地调整节流件的几何尺寸(不只是β值),从而得到满意的测量结果。实践表明,这样做是成功的、必要的。 5、产品的流出系数的标定 LCLV锥流量计为何能有如此的计量性能?产品流出系数实标也是一项重要技术。产品流出系数(或流量系数)是仪表的最关键技术参数。所谓产品国家标准,说到家,主要也是确保产品流出系数的、。我公司在严格控制产品加工、检验质量的同时,XXLV锥形流量计产品出厂前,其式主义 流出系数一般都在国家技术监督部门认证授权的法制计量部门,按用户实用工况雷诺数范围进行实流标定。所以使用XXLV锥形流量计的计量数据是、的(其中对于用户要求测量精度不是很高的如在±1%以内即可的,也可以不经实流标定而直接采用相同规格产品既往多台标定结果的经验值。 6、产品的实用情况 产品自投放市场以来,已成功地用于石油、石化、化工、冶金、电力、热力、轻工、环保、机械制造等诸多行业、能源计量,深得用户的好评。
售后:1、我公司所售产品在十二个月以内出现质量问题的,负责免费维修。2、质保期内如我公司产品出现任何质量问题,我公司负责免费维修或更换。3、质保期内如用户使用不当,造成产品损坏,我公司负责维修,收取损坏部件成本费。4、质保期后产品出现质量问题,我公司负责维修,收取损坏部件成本费。5、我公司全天侯服务热线:0517-869893666.如用户需我公司现场服务,对省内用户我公司服务人员12小时内到达现场,省外用户48小时内到达现场。7、我公司投诉电话: 018915184008 HLZV(13915182233)HLZV系列V锥流量计
HLZV系列V锥流量计是一种新型差压式流量计,它由V锥流量传感器、引压附件与差压变送器组成。V锥流量传感器由同轴安装在测量管内的迎流与背流锥形芯体对接构成,流体沿迎流锥形芯体逐渐节流收缩到管道内壁附近,随后沿管道内壁与背流锥形芯体流出,在迎流锥体上游与背流锥体下游之间形成一定的压力差,通过引压附件与差压变送器可以测量此压力之差,从而实现流量测量的功能。 STV系列V锥流量计由于其结构简单、牢固、易复制、通用性强、价格较低廉等特点,广泛应用于石油、化工、天然气等领域。本产品克服了标准孔板、文丘里管、喷嘴等节流装置,诸如易磨损、压损大、范围度(量程比)小、现场安装条件高、要求直管段过长等自身缺陷,它可以在很宽的雷诺数范围内对各种流体的流量进行精确测量。 STV系列V锥流量计与普通差压式流量计比较,具有精确度高、精度稳定、重复性好,受安装条件局限小、耐磨损、测量范围度宽、适合脏污介质、压力损失小、使用寿命长等特点。可以广泛应用于各种领域,适合测量水、油、多种液体、蒸汽、空气、天然气、煤气、石油气、有机气体、油渣等。 主要参数 ● 测量介质:液体、气体、蒸汽 ● 公称通经:DN25mm~DN2000mm ● 公称压力:≤16MPa; 最大≤42.0MPa ● 工作温度:-40℃~600℃ ● 环境温度:-40℃~60℃ ● 相对湿度:5%~90% ● 流量计精确度:±0.5%、±1.0%、±1.5% ● 重复性:0.15%、0.33%、0.5% ● 范围度(量程比):10:1 ● 适用雷诺数:8000~1×107 ● 结构形式:法兰连接型、对夹型、特殊(按用户需求) ● 安装直管段长度:一般上游1~3D,下游0.5~1D ● 材质:碳钢、SUS304、SUS316L、其它 ● 流向:水平、垂直、其它 ● 等效直径比:0.45~0.85 SK系列SK系列V锥流量计
简介:SK系列V锥流量计又称内锥流量计、V锥、锥形流量计,是一种具有专利技术的新型差压流量计,和其它类型的差压流量计的基本原理相同,都是基于密封管道中的能量守恒原理,SK系列V锥流量计的独特设计,扩大了流量测量范围,并避免了传统差压流量计的一些局限性,工作性能更优。SK系列V锥流量计是在管道中心悬挂一个锥形截流件,锥形件阻碍介质流动,重塑流速曲线,测量介质包括水、蒸汽、空气、天然气、氮气、焦炉煤气和有机气体等。介质条件可从深低温到超临界状态。工作温度700℃,最大压力40Mpa,可测量雷诺数为5*106,雷诺数为8*103甚至更低。产生满刻度差压信号从小于0.1 千帕到几十千帕。工作原理:SK系列V锥流量计是一种差压流量仪表,迄今为止以差压原理设计的流量仪表已经有一百多年的应用历史了。差压原理是基于密封管道中的能量转换原理,也就是说对稳定流体,流量与管道中介质流速的平方根成正比。当介质接近锥体时,其压力为P1,在介质通过锥体的截流区时,速度增大,压力降低为P2,P1和P2都通过锥形流量计的取压口引到差压变送器上,当流速发生变化时,锥形流量计的两个取压口之间的差压值会增大或缩小。 SK系列V锥流量计在进行流量计算时所采用的计算公式同其他差压流量仪表相同,但其截流元件的独特设计,迫使管道中心的介质绕着锥体流动,与其他差压流量计相比这样有很多优点。我们可以借助理想状态流速曲线分布图来理解锥形流量计的性能。管道中的流体没有受到任何干扰和阻碍,即是我们所说的理想流态,他的流速分布均匀,靠近管壁的流速几乎为零,管道中心的流速达到最大,靠近管壁的流速几乎为零,是由于管壁对介质的摩擦力造成的。由于锥体悬挂在管线中心,他直接同流体的高速区接触,迫使高速区的流体同近管壁低速区的流体相混合从而使流速均匀化。所以即使流速很低,锥形流量计仍能使流体与管道中心的流速连续作用产生正确差压。 现实中,流速很难分布均匀,管道上的任何变化都可能对流体造成影响,如:湾头、阀门、缩径、扩径、泵、三通等等,而锥形流量计利用锥体对上游的流速分布曲线重新进行塑造,即使在极为恶劣的情况下,仍能测量精度。特点: 流量计精度:±0.5%、±1.0%、±1.5%系统精度须参照应用条件及二次表的精度。重复性好:优于±0.1%量程比宽:正常情况下为10:1,若有必要也可加大。直管段要求低:流量计前0~3D 直管段、后0~1D 直管段即可测量精度。实验证明,V锥流量计可以接近单弯管或不同平面的双弯管而对精度影响很小。稳定性好:锥体的外形设计流体在流经锥体时是一种渐变的过程,无突变,β值可保持不变,仪表可使用不需标定。信 号 稳 定:所有差压流量计都会有“信号波动”,也就是说即使流体非常稳定,通过一次节流元件产生的信号也会有波动。对孔板而言,在节流件后形成的旋涡较长,这些长的旋涡会产生高幅、低频波动信号,这些信号会对差压表的读数造成干扰。而锥形流量计会在其下游形成小旋涡,产生低幅、高频波动信号。压损 小:由于没有突出的挡板,因此锥形流量计的压力损失比孔板低3/4。无滞留死区:锥体的“吹扫式”设计不存在死区,因此在锥体上不会堆积流体碎片、粘渣或杂质。混合器作用:V 锥流量计的下游所产生的旋涡是短旋涡,可在下游将介质混合,因此,目前V锥形流量计在作为流量计工作的同时,还可在很多场合用做静态搅拌器,可迅速而充分的将介质搅拌均匀。应用:介 质:煤气、天然气(包括含湿度5%以下)、各种碳氢化合物(包括含湿的HC气体)、各种稀有气体(氢、氦、氩、氧、氮等)、、湿的氯化物气体、空气(包括含水、含SiO2粒子以及含其他悬浮物的空气)、烟道气、饱和蒸汽(含汽、水两相流)、过热蒸汽、水等。条 件:从深冷到超临界状态,温度达700℃,最大压力40Mpa。计 算:每一个锥形流量计都根据流体的性质、压力和温度用专门的软件进行计算。用户可根据自己的应用条件(所测介质的组份、温度、压力、管径、最大流量、常用流量、最小流量、准许最大压力损失)选择β值。维 护:锥形流量计免维护,不需要定期维护和检定。法兰式安装选型说明:SK系列V锥形流量计采用国标公制法兰GB/T9112-9124-2000)连接,有多种压力等级可供选择。 最新产品
|